pub trait BaseCache: Send + Sync {
// Required methods
fn lookup(
&self,
prompt: &str,
llm_string: &str,
) -> Result<Option<CachedGenerations>>;
fn update(
&self,
prompt: &str,
llm_string: &str,
return_val: CachedGenerations,
) -> Result<()>;
fn clear(&self) -> Result<()>;
fn alookup<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
) -> Pin<Box<dyn Future<Output = Result<Option<CachedGenerations>>> + Send + 'async_trait>>
where Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait;
fn aupdate<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
return_val: CachedGenerations,
) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>
where Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait;
fn aclear<'life0, 'async_trait>(
&'life0 self,
) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>
where Self: 'async_trait,
'life0: 'async_trait;
}
Expand description
Interface for a caching layer for LLMs and Chat models.
The cache interface consists of the following methods:
- lookup: Look up a value based on a prompt and llm_string.
- update: Update the cache based on a prompt and llm_string.
- clear: Clear the cache.
In addition, the cache interface provides an async version of each method.
The default implementation of the async methods is to run the synchronous method in an executor. It’s recommended to override the async methods and provide async implementations to avoid unnecessary overhead.
Required Methods§
Sourcefn lookup(
&self,
prompt: &str,
llm_string: &str,
) -> Result<Option<CachedGenerations>>
fn lookup( &self, prompt: &str, llm_string: &str, ) -> Result<Option<CachedGenerations>>
Look up based on prompt and llm_string.
A cache implementation is expected to generate a key from the 2-tuple of prompt and llm_string (e.g., by concatenating them with a delimiter).
§Arguments
prompt
- A string representation of the prompt. In the case of a Chat model, the prompt is a non-trivial serialization of the prompt into the language model.llm_string
- A string representation of the LLM configuration. This is used to capture the invocation parameters of the LLM (e.g., model name, temperature, stop tokens, max tokens, etc.). These invocation parameters are serialized into a string representation.
§Returns
On a cache miss, return None. On a cache hit, return the cached value. The cached value is a list of Generations (or subclasses).
Sourcefn update(
&self,
prompt: &str,
llm_string: &str,
return_val: CachedGenerations,
) -> Result<()>
fn update( &self, prompt: &str, llm_string: &str, return_val: CachedGenerations, ) -> Result<()>
Update cache based on prompt and llm_string.
The prompt and llm_string are used to generate a key for the cache. The key should match that of the lookup method.
§Arguments
prompt
- A string representation of the prompt. In the case of a Chat model, the prompt is a non-trivial serialization of the prompt into the language model.llm_string
- A string representation of the LLM configuration. This is used to capture the invocation parameters of the LLM (e.g., model name, temperature, stop tokens, max tokens, etc.). These invocation parameters are serialized into a string representation.return_val
- The value to be cached. The value is a list of Generations (or subclasses).
Sourcefn alookup<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
) -> Pin<Box<dyn Future<Output = Result<Option<CachedGenerations>>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait,
fn alookup<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
) -> Pin<Box<dyn Future<Output = Result<Option<CachedGenerations>>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait,
Async look up based on prompt and llm_string.
A cache implementation is expected to generate a key from the 2-tuple of prompt and llm_string (e.g., by concatenating them with a delimiter).
§Arguments
prompt
- A string representation of the prompt. In the case of a Chat model, the prompt is a non-trivial serialization of the prompt into the language model.llm_string
- A string representation of the LLM configuration. This is used to capture the invocation parameters of the LLM (e.g., model name, temperature, stop tokens, max tokens, etc.). These invocation parameters are serialized into a string representation.
§Returns
On a cache miss, return None. On a cache hit, return the cached value. The cached value is a list of Generations (or subclasses).
Sourcefn aupdate<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
return_val: CachedGenerations,
) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait,
fn aupdate<'life0, 'life1, 'life2, 'async_trait>(
&'life0 self,
prompt: &'life1 str,
llm_string: &'life2 str,
return_val: CachedGenerations,
) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
'life1: 'async_trait,
'life2: 'async_trait,
Async update cache based on prompt and llm_string.
The prompt and llm_string are used to generate a key for the cache. The key should match that of the lookup method.
§Arguments
prompt
- A string representation of the prompt. In the case of a Chat model, the prompt is a non-trivial serialization of the prompt into the language model.llm_string
- A string representation of the LLM configuration. This is used to capture the invocation parameters of the LLM (e.g., model name, temperature, stop tokens, max tokens, etc.). These invocation parameters are serialized into a string representation.return_val
- The value to be cached. The value is a list of Generations (or subclasses).